SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583 (Autonomous)

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Metrology & Measurements (16ME326)
Course & Branch: B.Tech - ME

Year & Sem: IV-B.Tech & I-Sem Regulation: R16

<u>UNIT –I</u>

1.					
			L1	CO1	12M
		sketch?			
2.		Construct the conventional diagram of limits and fits and explain all terms.	L6	CO1	12M
3.		In a hole and shaft assembly of 30mm nominal size, the tolerances for hole	L5	CO1	12M
		and shaft are as specified below: Hole: $30^{+0.02}$ mm Shaft: $30^{-0.040}$ mm			
		Determine: i) Maximum and minimum clearance obtainable ii) Allowance			
		iii) Hole and shaft tolerance iv) The type of fit.			
4.		Between two mating parts of 100 mm basic size, the actual interference fit is	L6	CO1	12M
		to be from 0.05mm to 0.12mm. The tolerance for hole is the same as the			
		tolerance for the shaft. solve the size of the shaft and the hole on (a) hole			
		basis unilateral system b) Shaft basis unilateral system.			
5.	a)	Define Maximum, Minimum Metal limits and Maximum, Minimum	L1	CO1	6M
		clearances with the help of neat sketches.			
	b)	Distinguish unilateral and bilateral tolerance system.	L4	CO1	6M
6.	a)	Distinguish between 'Hole basis system' and 'Shaft basis system' of fits.	L4	CO1	6M
	b)	Define deviations. Explain types of deviations with the help of sketches.	L1	CO1	6M
7.	a)	Explain selective assembly.	L2	CO1	6M
	b)	List out types of assembly systems? Elaborate interchangeability.	L6	CO1	6M
8.		Describe briefly the principal features of the Indian standard System of	L1	CO1	12M
		limits and fits.			
9.		What are the different types of limit gauge? Explain any five limit gauges.	L1	CO1	12M
10.	a)	What is Taylor's principle of gauge design?	L1	CO1	6M
	b)	Distinguish between the GO and NO-GO gauges	L4	CO1	6M

<u>UNIT –II</u>

1.		Elaborate the construction and uses of a) Vernier bevel protractor b) Vernier	L6	CO2	12M
		height gauge			
2.	a)	What is mean by wringing process? Describe briefly the manufacture of slip	L1	CO2	6M
		gauges.			
	b)	What is procedure for buildup slip gauge blocks for required dimension	L1	CO2	6M
3.	a)	State the principle of a micrometer. Explain with neat Sketch an outside	L2	CO2	6M
		micrometer.			
	b)	Estimate possible sources of errors in micrometers	L6	CO2	6M
4.		Illustrate in detail the working of the Sine Bar to measure unknown angle.	L6	CO2	12M
5.	a)	Explain the angle measuring method involved in Bevel protractors with a	L4	CO2	6M
		neat sketch.			
	b)	State how surface finish is designed on drawings	L1	CO2	6M
6.		Express the following methods of qualifying surface roughness:	L2	CO2	12M
		(a) Ra value. (b) RMS value. (c) Rz value.			
7.	a)	Briefly describe the construction, principle and operation of Talysurf with a	L1	CO2	6M
		neat sketch			
	b)	Define the terms (a) Primary texture (b) Secondary texture	L1	CO2	6M
8.	a)	Explain BIS symbols for indication of surface finish	L2	CO2	6M
	b)	Name the two types of ideal indicators, draw a simple diagram of dial	L1	CO2	6M
		indicator			
9.		Explain with the help of neat sketches the principle and construction of an	L2	CO2	12M
		auto collimator.			
10.	a)	Describe the principle involved in Michelson interferometer with a line	L1	CO2	6M
		diagram			
	b)	Discuss about care of Snap Gauge, Screw Pitch Gauge, Feller Gauge	L6	CO2	6M

<u>UNIT –III</u>

	1.	List out the various elements that you would measure in a screw thread?	L1	CO3	12M
		Also list the instruments that are required for measuring these elements			
2	2. a)	Give details about three wire method of measuring effective diameter of	L1	CO3	6M
		screw threads.			
	b)	What are the errors and its causes in screw threads?	L1	CO3	6M
3	3. a)	Evaluate (i) Outer diameter. (ii) Effective diameter.	L5	CO3	6M
		(iii) Core diameter. (iv) Pitch diameter			
	b)	Describe measurement of effective diameter with two wire method with neat			
		sketch	L1	CO3	6M
4	4.	With the help of a neat sketch explain the construction, working and	L2	CO3	12M
		application of tool maker's microscope.			
4	5. a)	Explain the elements of gear tooth profile with neat sketch	L2	CO3	6M
	b)	Classify the various sources of errors in manufacturing gears.	L4	CO3	6M
(5. a)	Explain with neat sketch the gear tooth profile measurement.	L2	CO3	6M
	b)	Describe the parkinson's gear tester and state its limitations	L1	CO3	6M
-	7. a)	Describe measurement of pitch by base Tangent method.	L1	CO3	6M
	b)	Elaborate method of measuring the gear tooth thickness by Constant Chord	L1	CO3	6M
		method			
8	3. a)	With the help of an illustration, explain any four alignment tests on lathe	L2	CO3	8M
	b)	Discuss the factors influenced working accuracy of the machine tool.	L6	CO3	4M
Ģ	€.	With the help of an illustration, explain any four alignment tests on milling	L2	CO3	12M
		machine.			
10).	With the help of an illustration, list out any four radial drilling machine test.	L1	CO3	12M

<u>UNIT -IV</u>

1.	Classify digital transducers? Elaborate piezoelectric effect and sketch with	L6	CO4	12M
	neat Piezo-electric transducer.			
2.	List the displacement transducers? Express any one of displacement	L2	CO4	12M
	transducer with neat sketch.			
3. a)	Define transducer? List and explain two important and closely related parts	L1	CO4	6M
b)	Classify transducers? Discuss active and passive transducers with examples	L1	CO4	6M
4.	Prove variable Capacitance Transducer is the most common form of	L5	CO4	12M
	measurement of displacement?			
5. a)	List out classification of tachometers? Elaborate DC tachometer generator	L2	CO4	6M
	with neat sketch.			
b)	Explain working of Photo-electric tachometer	L2	CO4	6M
6. a)	Describe the principle of bonded and un bonded strain gauges?.	L1	CO4	6M
b)	List the essential characteristics required for the backing material of a	L1	CO4	6M
	bonded strain gauge			
7. a)	Define strain rosette? Depending on the arrangement of strain gauges, list out	L1	CO4	6M
	strain rosettes			
b)	Elaborate Rectangular strain gauge rosette	L6	CO4	6M
8.	What is the principle of strain gauge? Explain the method of usage for	L1	CO4	12M
	measurement of strains.			
9.	Explain working of Electrical Strain Gauge.	L2	CO4	12M
10. a)	The most popular is the vibration seismic accelerator justify with Principle	L5	CO4	6M
	of seismic instrument with neat sketch.			
b)	Explain working Principle of Accelerometer with neat sketch.	L2	CO4	6M

<u>UNIT -V</u>

1.		List out thermal expansion methods and describe electrical resistance sensor	L1	CO5	12M
		of RTD with neat sketch			
2.		Explain in detail about the principle and advantages of thermo couple	L6	CO5	12M
3.		Sketch a Mcleod gauge and explain working principles. Describe	L1	CO5	12M
		applications and limitations			
4.	a)	Define pyrometer? With neat sketch elaborate total radiation pyrometer	L1	CO5	6M
	b)	What is formula for dead weight tester? Discuss the Dead Weight gauge in	L1	CO5	6M
		detail.			
5.	a)	Define manometer? Elaborate the U- tube Manometer in detail.	L6	CO5	6M
	b)	List out common piezoelectric material? Sketch Piezoelectric pressure	L1	CO5	6M
		transducer with parts.			
6.	a)	Explain about Diaphragm gauge in detail. write advantages.	L4	CO5	6M
	b)	List the essential characteristics required for the backing material of a	L1	CO5	6M
		bonded strain gauge			
7.	a)	Discuss the U- tube Differential Manometer in detail. derive the expression	L6	CO5	6M
		for pressure difference.			
	b)	List out very high pressure measuring instruments and draw with neat sketch			
		C type Bourdon tube	L1	CO5	6M
8.		What are the methods employed for the measurement of torque? Sketch a	L1	CO5	12M
		strain gauge torque meter and elaborate it.			
9.		What are the basic methods of force measurement? Elaborate elastic force	L1	CO5	12M
		devices with neat sketch			
10.	a)	Explain the principle and working of dynamometer with neat sketch.	L2	CO5	6M
	b)	List out the dynamometers classification and explain any one with neat sketch?	L1	CO5	6M